Representation of Strict Closure Space Algebras

Jan Plaza
Computer Science Department
SUNY Plattsburgh

CUNY Graduate Center
Seminar in Logic and Games
October 28, 2011
Goldilocks’ thoughts on topology

- Closure spaces (Riesz, Moore, 1909-1910) – too weak
- Hausdorff spaces (Hausdorff, 1914) – too strong
- Topological spaces (Kuratowski, 1922) – just right
Definition of closure spaces

A **Closure space** – \(\langle X, Cl \rangle \), where \(X \) is a set

\(Cl : \mathcal{P}(X) \rightarrow \mathcal{P}(X) \) – **closure operation** s.t.:

\[
(\text{cls}_{Cl}) \quad B \subseteq ClB, \\
ClClB = ClB, \\
\text{If } B_1 \subseteq B_2 \text{ then } ClB_1 \subseteq ClB_2.
\]

\(\text{cls}_{Cl} \) is equivalent to: \(B_1 \subseteq ClB_2 \text{ iff } ClB_1 \subseteq ClB_2. \)

Strict, if also:

\[
(\text{str}_{Cl}) \quad Cl\emptyset = \emptyset.
\]

Additive, if also:

\[
(\text{add}_{Cl}) \quad ClA \cup ClB = Cl(A \cup B).
\]

Topological space = strict and additive closure space.
Examples of closure spaces

- Theories and a consequence operation (Tarski, 1930)
 - neither strict nor additive.
 Closed sets = theories closed under consequences.

- Binary relations and transitive closure
 - strict closure space.
 Closed sets = transitive relations.

- Binary relations and taking smallest extending congruence
 - neither strict nor additive.
 Closed sets = congruence relations.

- Closure of a set of database attributes under functional dependencies
 - strict closure space.
Alternative characterizations

Like topological spaces, closure spaces can be characterized using:

- Interior operation
- Family of closed subsets
- Family of open subsets
- Close base
- Open base
Interior operation

\[\text{Int} : \mathcal{P}(X) \rightarrow \mathcal{P}(X), \text{ s.t.:} \]

\begin{align*}
\text{(cls}_{\text{Int}} &) & & \text{Int}B \subseteq B \\
\text{Int} \text{Int}B & = \text{Int}B \\
\text{if } B_1 \subseteq B_2 \text{ then } \text{Int}B_1 & \subseteq \text{Int}B_2 \\
\text{(str}_{\text{Int}} &) & & \text{Int}X = X \\
\text{(add}_{\text{Int}} &) & & \text{Int}A \cap \text{Int}B = \text{Int}(A \cap B) \\
\end{align*}

Given an operation \(\text{Int} : \mathcal{P}(X) \rightarrow \mathcal{P}(X) \), define \(\text{Cl}_{\text{Int}} : \mathcal{P}(X) \rightarrow \mathcal{P}(X) \) as

\[\text{Cl}_{\text{Int}}A = X - \text{Int}(X - A). \]

Note: Replace \(\text{Int} \) by □ and these are axioms of S4.
Family of open sets

\[\mathcal{O} \text{ s.t.:} \]

\[(cls_\mathcal{O}) \quad \emptyset \in \mathcal{O} \]
\[
\text{If } Q \subseteq \mathcal{O} \text{ then } \bigcup Q \in \mathcal{O}.
\]

\[(str_\mathcal{O}) \quad X \in \mathcal{O} \]

\[(add_\mathcal{O}) \quad \text{If } A, B \in \mathcal{O} \text{ then } A \cap B \in \mathcal{O} \]

Given a family \(\mathcal{O} \) of subsets of \(X \), define \(\text{Int}_\mathcal{O} : \mathcal{P}(X) \rightarrow \mathcal{P}(X) \) as

\[\text{Int}_\mathcal{O}A = \bigcup\{B \in \mathcal{O} \mid B \subseteq A\}. \]
Open base

\(\mathcal{B} \subseteq \mathcal{P}(X) \) s.t.:

\begin{align*}
(cls_\mathcal{B}) & \quad \text{true} \\
(str_\mathcal{B}) & \quad \bigcup \mathcal{B} = X \\
(add_\mathcal{B}) & \quad \text{If } A, B \in \mathcal{B} \text{ then } \bigcup \{ C \in \mathcal{B} \mid C \subseteq A \cap B \} = A \cap B
\end{align*}

\(cls_\mathcal{B} \) means that any family of sets is an open base of a closure space.

Given a family \(\mathcal{B} \) of subsets of \(X \), define
\(\mathcal{O}_\mathcal{B} \subseteq \mathcal{P}(X) \) as
\(\mathcal{O}_\mathcal{B} = \{ \bigcup A \mid A \subseteq \mathcal{B} \}. \)

Notice that taking \(A = \emptyset \) gives \(\emptyset \in \mathcal{O}_\mathcal{B} \).

Weight of \(X \) – the smallest of cardinalities of open bases of \(X \).
Topological concepts

- **Open set**
- **Closed set**
- **Continuous function**
- **Open function** – where image of every open set is open
- **Dense subset**

Defined the same way as in topology.
From category theory

When continuous mappings are used as morphisms:

- **Homeomorphism**
- **Subspace**
- **Discrete space** – where every set is open
- **Power space** or cube X^n

$[\kappa]$ – discrete closure space of cardinality κ; notice that it is strict.
Powers

\[X = \langle X, \mathcal{O} \rangle \] – a closure space.
\[n \] – a cardinal.

Define \textit{(non-additive) power} or \textit{(non-additive) cube} \(X^n \) to be a closure space with:

- universe \(X^n \)

- open base \(\prod_{i<n'} X \times G \times \prod_{n'<i<n} X \) where \(n' < n \) and \(G \in \mathcal{O} \).

Note: if \(X \) is a topological space, its power in the category of topological spaces is not the same its power in the category of strict closure spaces.
Jankowski’s theorem (1985)

Let:

\[Y_0 = \{g_1, g_2, f_1, f_2\} \] – strict closure space
with open sets family \(\mathcal{O} = \{\emptyset, \{g_1, g_2\}, Y_0\} \);
\(n \) – a cardinal number.

Then:

any strict closure space \(X \)
such that \(\text{card}(X) \leq 2^n \) and \(\text{weight}(X) \leq n \)
is homeomorphic to a subspace of the cube \(Y_0^n \).
Representation theorems

X – a set, $P(X) = \langle P(X), \cap, \cup, \Rightarrow, -, X, \emptyset \rangle$.

Boolean algebra of sets – any subalgebra of $P(X)$.

\mathcal{E} – all equations satisfied in all Boolean algebras of sets.

Boolean algebra – any $\langle A, \land, \lor, \rightarrow, -, \top, \bot \rangle$ that satisfies \mathcal{E}.

Stone representation theorem (1936)
Any Boolean algebra A is isomorphic to a Boolean algebra of sets.
Representation theorems II

\[X = \langle X, \text{Int} \rangle - \text{topological space} \]
\[P(X) = \langle \mathcal{P}(X), \cap, \cup, \Rightarrow, -, X, \emptyset, \text{Int} \rangle \]

Interior algebra of subsets of topological space
– any subalgebra of \(P(X) \);

\(\mathcal{E} \) – all equations satisfied in all Boolean algebras of subsets of topological spaces.

Interior algebra – any \(\langle A, \land, \lor, \rightarrow, -, \top, \bot, \text{Int} \rangle \) that satisfies \(\mathcal{E} \); also known as **topological Boolean algebra**.

Sikorski representation theorem (1958)
For every countable interior algebra \(A \) there exists a set \(X_0 \) of irrational numbers s.t. \(A \) is isomorphic to an interior algebra of subsets of \(\langle X_0, \text{Int} \rangle \) with the topology inherited from the real line.
Representation vs. completeness
Algebra vs. logic

The same crucial lemma leads to representation and completeness:
... for every non-zero element of an algebra there exists a maximal
filter that contains that element ...

Rasiowa and Sikorski’s work (1950’s)

- Any countable set of infinite joins and meets in \mathcal{A} can be
 preserved in the representation.

- Algebraic proof of Gödel’s completeness theorem.

- Completeness of a first-order version of modal logic S4.
Strict closure space algebras

\[A = \langle A, \land, \lor, \rightarrow, -, Int, \top, \bot, \rangle \]

must satisfy:

1. The reduct \(\langle A, \land, \lor, \rightarrow, -, \top, \bot \rangle \) is a BA;

2. \(Int \) satisfies:
 \[
 \begin{align*}
 Inta & \leq a, \\
 Inta & \leq IntInta, \\
 \text{if } a \leq b \text{ then } Inta & \leq Intb;
 \end{align*}
 \]

3. \(Int \) also satisfies strictness condition:
 \[Int \top = \top. \]

We define \(Cl \) as \(Cla = \neg Int - a. \)
Infinite joins and meets

A set Q is called a set of infinite joins and meets in SCSA A if:
\[
\langle \{a_i\}_{i \in I}, 0, a \rangle \in Q \implies \bigwedge_{i \in I} a_i = a,
\]
\[
\langle \{a_i\}_{i \in I}, 1, a \rangle \in Q \implies \bigvee_{i \in I} a_i = a.
\]

A homomorphism $f : A \rightarrow B$ is said to preserve Q or to be a Q-homomorphism if:
\[
\langle \{a_i\}_{i \in I}, 0, a \rangle \in Q \implies \bigwedge_{i \in I} f(a_i) = f(a),
\]
\[
\langle \{a_i\}_{i \in I}, 1, a \rangle \in Q \implies \bigvee_{i \in I} f(a_i) = f(a).
\]

An isomorphic embedding f of a SCSA A into a complete SCSA B is called a Q-isomorphic embedding if it preserves Q.

BA A is Q-representable if it can be Q-isomorphically embedded in $\mathcal{P}(X)$ for some set X.

17
Universality of the Cantor cube

In topology, Cantor cube of weight n ($[2]^n$) is universal for all zero-dimensional topological spaces (T1 spaces with an open base consisting of clopen sets) of weight n.

We will show analogous result for strict closure spaces.
Conditional Q-representation of SCSAs

$C(X)$ – the SCSA of all subsets of a strict closure space X.

Lemma.
Assume:
1. n is an infinite cardinal;
2. A is a SCSA of cardinality $\leq n$;
3. Q is a set of infinite joins and meets from A.
Then:
if Boolean reduct of A is Q-representable
then there exists a Q-isomorphic embedding of A into SCSA $C(X)$ of all subsets of a strict closure space $X \subseteq [2]^n$.
Sketch of the proof

1. There exists a Q-isomorphic embedding f of A into $C(X')$ where X' is a certain strict closure space.

2. By Jankowski’s theorem there exists a homeomorphic embedding h of X' into $[Y_0]^n$.

3. Let $X'' = [2]^4$. There exists a decomposition of X'' into nonempty, disjoint sets G_1, G_2, F_1, F_2 such that $G_1 \cup G_2$ is an open set, $\text{Cl}G_1 = \text{Cl}G_2 = X''$, $\text{Cl}F_1 = \text{Cl}F_2 = X'' - G_1 - G_2$.

4. Using the decomposition from 3 we define a continuous, open mapping ψ from $[\kappa]^n$ onto $[Y_0]^n$.
5. The required Q-isomorphism can be constructed using the functions from 1, 2, 4:

\[A \xrightarrow{Q\text{-iso emb}} C(X') \xleftarrow{Q\text{-iso}} C(\psi \vec{h}(X')) \]

Here h^{-1} is the inverse function to h

$\vec{h}(\ldots)$ is the image of a set under h

$\psi (\ldots)$ is the inverse image under ψ.

We take $X = \psi(\vec{h}(X'))$.

QED
Theorem.
Assume:
1. n is an infinite cardinal;
2. A is a SCSA of cardinality $\leq n$;
3. Q is at most countable set of infinite joins and meets from A.
Then:
there exists a Q-isomorphic embedding of A into SCSA $C(X)$ of all subsets of a strict closure space $X \subseteq [2]^n$.

Q-representation of SCSAs
Modal logic of strict closure spaces

Extend classical logic with schemas

N \(\Box \top, \)
T \(\Box \alpha \rightarrow \alpha, \)
4 \(\Box \alpha \rightarrow \Box \Box \alpha, \)
RM \(\alpha \rightarrow \beta / \Box \alpha \rightarrow \Box \beta. \)

SCS_0 – propositional
SCS_1 – first-order
No description operators, abstraction operators, lambda operator.
Lindenbaum algebras

T – SCS_1-theory in language L, based on axioms A.
n – infinite cardinal number.
L' – the language obtained from L by replacing its free individual variables by $x_\eta : \eta < n$.

T' be an SCS_1-theory in L' based on A.

Define $A_n(T)$ or the Lindenbaum algebra with n variables, of T – the quotient algebra of the algebra of formulas of L' with respect to congruence:

$\alpha \sim \beta$ iff $\alpha \leftrightarrow \beta$ is a theorem of T'.
Infinite joins and meets corresponding to quantifiers

If $n \geq \omega$ then

$$\bigcap_{t \in \text{Term}} \| \alpha(t) \| = \| (\forall \zeta) \alpha(\zeta) \|,$$

$$\bigcup_{t \in \text{Term}} \| \alpha(t) \| = \| (\exists \zeta) \alpha(\zeta) \|,$$

where Term is the set of all terms of the language obtained by adding to L the variables $x_\eta : \eta < n$.

The set of infinite joins and meets in $\mathcal{A}_n(T)$ which correspond to quantifiers is the set Q containing

$$\langle \{\| \alpha(t) \| \}_t \in \text{Term}, 0, \| (\forall \zeta) \alpha(\zeta) \| \rangle,$$

$$\langle \{\| \alpha(t) \| \}_t \in \text{Term}, 1, \| (\exists \zeta) \alpha(\zeta) \| \rangle.$$

Q does not contain all the infinite joins and meets from $\mathcal{A}_n(T)$: if $n > \omega$ then $\langle \{\| \alpha(x_\eta) \| \}_{\eta < \omega}, 0, \| (\forall \zeta) \alpha(\zeta) \| \rangle \notin Q$.

Notice that $\text{card}(Q) = \text{card}(\mathcal{A}_n(T))$.
Q-filters, reducing meets and joins

Let \mathcal{A} be a Boolean algebra with a set \mathcal{Q} of infinite joins and meets, and let ∇ be a proper filter in \mathcal{A}.

1. ∇ is said to be a \mathcal{Q}-filter provided that the natural homomorphism from \mathcal{A} onto \mathcal{A}/∇ is a \mathcal{Q}-homomorphism, i.e. $\nabla = \overleftarrow{h}(\{\top\})$ for some \mathcal{Q}-homomorphism h. (Notice that unlike Rasiowa and Sikorski we do not require \mathcal{Q}-filters to be maximal.)

2. ∇ is said to reduce the meets from \mathcal{Q} provided that for all $\langle \{a_i\}_{i \in I}, 1, a \rangle$ and $\langle \{b_j\}_{j \in J}, 0, b \rangle$ from \mathcal{Q}:
 - if $\{b_j\}_{j \in J} \subseteq \nabla$ then $b \in \nabla$, and
 - if $\{-a_i\}_{i \in I} \subseteq \nabla$ then $-a \in \nabla$.

26
Proposition.
Let ∇ be a filter in a Boolean algebra with a set Q of infinite joins and meets.

1. If ∇ is a Q-filter then ∇ reduces the meets from Q.

2. If ∇ is a maximal filter then the following are equivalent:
 a) ∇ is a Q-filter,
 b) ∇ reduces the meets from Q.
Proposition.
Assume:

\(T \) – first-order theory in a language of cardinality \(n \),
\(A_n(T) \) be the Lindenbaum algebra of \(T \) with \(n \) variables,
\(Q \) – the set of infinite joins and meets that correspond to quantifiers.

Then:

any filter \(\nabla \) in \(A_n(T) \)
generated by a set of cardinality less than \(n \)
reduces the meets of \(Q \).
Proof

Let ∇ be generated by $\{\| \beta_i \| | i \in I\}$; $\text{card}(I) < \omega$.
Assume $\{\| \alpha(t) \| \}_{t \in \text{Term}} \subseteq \nabla$.
If $\| \alpha(t) \| \in \nabla$ then there exist formulas $\beta_{i_1}, \ldots, \beta_{i_k}$ such that
$\beta_{i_1} \land \ldots \land \beta_{i_k} \rightarrow \alpha(t)$ is a theorem of T'.
As there are n variables among the terms in Term and as the number of finite sequences
of βs is less than n, there must be a single sequence $\beta_{j_1}, \ldots, \beta_{j_m}$ and
an infinite set V' of variables such that
for every $v \in V'$ we have $\beta_{j_1} \land \ldots \land \beta_{j_m} \rightarrow \alpha(v)$ is a theorem of T'.
As V' is infinite,
there exists a variable $v' \in V'$ that does not occur in $\beta_{j_1} \land \ldots \land \beta_{j_m}$.
As $\beta_{j_1} \land \ldots \land \beta_{j_m} \rightarrow \alpha(v')$ is a theorem of T',
also $\beta_{j_1} \land \ldots \land \beta_{j_m} \rightarrow (\forall \zeta) \alpha(\zeta)$ is a theorem of T'.
This implies that $\| (\forall \zeta) \alpha(\zeta) \| \in \nabla$.

QED
Q-representation of Lindenbaum algebras

Lemma.

Assume:
1. \(n \) is an arbitrary infinite cardinal;
2. \(L \) is a language of cardinality \(n \);
3. \(T \) is a \(\mathsf{SCS}_1 \) theory in \(L \);
4. \(Q \) is the set of infinite joins and meets in \(A_n(T) \) which correspond to quantifiers.

Then,
the Boolean reduct of the Lindenbaum algebra \(A_n(T) \) is \(Q \)-representable.

Note: it would not be true without \(\text{card} \, L \leq n \).
Sketch of the proof

Claim: for any non-zero element $\| \alpha \| \in \overline{A_n(T)}$ there exists a filter ∇^α that contains $\| \alpha \|$, and is maximal, and is a Q-filter.

Let $\alpha_\eta : \eta < n$ be a sequence of all formulas.

Define:

$$G_0 = \left\{ \begin{array}{ll} \{\alpha, (\forall \zeta)\alpha_0(\zeta)\} & \text{if this set generates a proper filter.} \\ \{\alpha, \neg\alpha_0(v)\} & \text{where } v \notin \text{var}(\alpha), \text{ otherwise.} \end{array} \right.$$

$$\nabla_0 = \nabla(G_0)$$

$$G_\eta = \left\{ \begin{array}{ll} \bigcup_{\eta' < \eta} G_{\eta'} \cup \{(\forall \zeta)\alpha_\eta(\zeta)\} & \text{if this set generates a proper filter.} \\ \bigcup_{\eta' < \eta} G_{\eta'} \cup \{\neg\alpha_\eta(v)\} & \text{where } v \notin \text{var}(\bigcup_{\eta' < \eta} G_{\eta'}), \text{ otherwise.} \end{array} \right.$$

$$\nabla_\eta = \nabla(G_\eta).$$
\(\nabla_{\eta} : \eta < n \) are proper filters.

Each of them contains \(\| \alpha \| \).

Let \(\nabla^\alpha = \bigcup_{\eta < n} \nabla_{\eta} \).

\(\nabla^\alpha \) contains \(\| \alpha \| \).

\(\nabla^\alpha \) is a proper filter.

\(\nabla^\alpha \) is a maximal filter.

\(\nabla^\alpha \) reduces the meets from \(Q \).

So, \(\nabla^\alpha \) is a \(Q \)-filter.

So, for any non-zero element \(\| \alpha \| \in \overline{A_n(T)} \) we constructed a maximal filter that is a \(Q \)-filter and contains \(\| \alpha \| \).
Let f' be the Stone isomorphic embedding of $\overline{A_n(T)}$ into Boolean algebra of all subsets of the set of all maximal filters in $\overline{A_n(T)}$.

Let P_Q be the set of all maximal filters which are Q-filters in $\overline{A_n(T)}$.

We define $f : \overline{A_n(T)} \to \mathcal{P}(P_Q)$, $f(a) = f'(a) \cap P_Q$.
f is an isomorphic embedding.

Let $X = P_Q$.

$f : \overline{A_n(T)} \to \mathcal{P}(X)$ is a Q-isomorphic embedding.

Notice that $\text{card}(X) \leq n$.

QED
Q-representation of Lindenbaum algebras

Assume that:

1. \(\kappa \) is a discrete strict closure space of cardinality \(\geq 2 \);

2. \(L \) is a language of cardinality \(n \);

3. \(T \) is an \(\text{SCS}_1 \) theory in \(L \);

4. \(Q \) is the set of infinite joins and meets in \(A_n(T) \) which correspond to quantifiers.

Then, there exists a \(Q \)-isomorphic embedding of \(A_n(T) \) into the SCSA \(C(X) \) of all subsets of a space \(X \subseteq [\kappa]^n \).